Clustering
Clustering adalah
metode penganalisaan data, yang sering dimasukkan sebagai salah satu
metode Data Mining, yang tujuannya adalah untuk mengelompokkan data
dengan karakteristik yang sama ke suatu ‘wilayah’ yang sama dan data dengan
karakteristik yang berbeda ke ‘wilayah’ yang lain. Ada beberapa pendekatan yang
digunakan dalam mengembangkan metode clustering. Dua pendekatan utama adalah
clustering dengan pendekatan partisi dan clustering dengan pendekatan hirarki.
Clustering dengan pendekatan partisi atau sering disebut dengan partition-based
clustering mengelompokkan data dengan memilah-milah data yang
dianalisa ke dalam cluster-cluster yang ada. Clustering dengan pendekatan
hirarki atau sering disebut dengan hierarchical clustering mengelompokkan
data dengan membuat suatu hirarki berupa dendogram dimana data yang mirip akan
ditempatkan pada hirarki yang berdekatan dan yang tidak pada hirarki yang
berjauhan. Di samping kedua pendekatan tersebut, ada juga clustering dengan
pendekatan automatic mapping (Self-Organising Map/SOM)
Clustering atau klasterisasi adalah metode pengelompokan data. Menurut Tan, 2006 clustering adalah sebuah proses untuk mengelompokan data ke dalam beberapa cluster atau kelompok sehingga data dalam satu cluster memiliki tingkat kemiripan yang maksimum dan data antar cluster memiliki kemiripan yang minimum. Clustering merupakan proses partisi satu set objek data ke dalam himpunan bagian yang disebut dengan cluster. Objek yang di dalam cluster memiliki kemiripan karakteristik antar satu sama lainnya dan berbeda dengan cluster yang lain. Partisi tidak dilakukan secara manual melainkan dengan suatu algoritma clustering. Oleh karena itu, clustering sangat berguna dan bisa menemukan group atau kelompok yang tidak dikenal dalam data. Clustering banyak digunakan dalam berbagai aplikasi seperti misalnya pada business inteligence, pengenalan pola citra, web search, bidang ilmu biologi, dan untuk keamanan (security). Di dalam business inteligence, clustering bisa mengatur banyak customer ke dalam banyaknya kelompok. Contohnya mengelompokan customer ke dalam beberapa cluster dengan kesamaan karakteristik yang kuat. Clustering juga dikenal sebagai data segmentasi karena clustering mempartisi banyak data set ke dalam banyak group berdasarkan kesamaannya. Selain itu clustering juga bisa sebagai outlier detection.
Manfaat Clustering :
1. Clustering merupakan
metode segmentasi data yang sangat berguna dalam prediksi dan analisa masalah
bisnis tertentu. Misalnya Segmentasi pasar, marketing dan pemetaan zonasi
wilayah.
2. Identifikasi
obyek dalam bidang berbagai bidang seperti computer vision dan image
processing.
Konsep dasar Clustering :
Hasil clustering yang baik akan menghasilkan tingkat
kesamaan yang tinggi dalam satu kelas dan tingkat kesamaan yang rendah antar
kelas. Kesamaan yang dimaksud merupakan pengukuran secaranumeric terhadap dua
buah objek. Nilai kesamaan antar kedua objek akan semakin tinggi jika kedua
objek yang dibandingkan memiliki kemiripan yang tinggi. Begitu juga dengan
sebaliknya. Kualitas hasil clustering sangat bergantung pada metode yang
dipakai. Dalam clustering dikenal
empat tipe data. Keempat tipe data pada tersebut ialah:
1.
Variabel
berskala interval
2.
Variabel
biner
3.
Variabel
nominal, ordinal, dan rasio
4.
Variabel
dengan tipe lainnya.
Metode clustering juga harus dapat mengukur kemampuannya
sendiri dalam usaha untuk menemukan suatu pola tersembunyi pada data yang
sedang diteliti. Terdapat berbagai metode yang dapat digunakan untuk mengukur
nilai kesamaan antar objek-objek yang dibandingkan. Salah satunya ialah
dengan weighted
Euclidean Distance. Euclidean distance menghitung jarak dua buah
point dengan mengetahui nilai dari masing-masing atribut pada kedua poin
tersebut. Berikut formula yang digunakan untuk menghitung jarak dengan
Euclidean distance:
Keterangan:
N = Jumlah record data
K =
Urutan field data
r = 2
µk =
Bobot field yang
diberikan user
Jarak
adalah pendekatan yang umum dipakai untuk menentukan kesamaan atau ketidaksamaan
dua vektor fitur yang dinyatakan dengan ranking. Apabila nilai ranking yang
dihasilkan semakin kecil nilainya maka semakin dekat/tinggi kesamaan antara
kedua vektor tersebut. Teknik pengukuran jarak dengan metode Euclidean menjadi
salah satu metode yang paling umum digunakan. Pengukuran jarak dengan metode
euclidean dapat dituliskan dengan persamaan berikut:
dimana v1 dan v2 adalah dua vektor yang jaraknya akan dihitung dan N menyatakan panjang vektor.
Syarat Clustering :
Menurut
Han dan Kamber, 2012, syarat sekaligus tantangan yang harus dipenuhi oleh suatu
algoritma clustering adalah:
1.
Skalabilitas
Suatu metode clustering harus mampu menangani data dalam jumlah yang besar. Saat ini
data dalam jumlah besar sudah sangat umum digunakan dalam berbagai bidang
misalnya saja suatu database. Tidak hanya berisi ratusan objek, suatu database
dengan ukuran besar bahkan berisi lebih dari jutaan objek.
2.
Kemampuan
analisa beragam bentukdata
Algortima klasteriasi harus mampu dimplementasikan pada berbagai
macam bentuk data seperti data nominal, ordinal maupun gabungannya.
3.
Menemukan cluster dengan bentuk yang tidak terduga
Banyak algoritma clustering yang menggunakan metode Euclidean atau
Manhattan yang hasilnya berbentuk bulat. Padahal hasil clustering dapat berbentuk
aneh dan tidak sama antara satu dengan yang lain. Karenanya dibutuhkan
kemampuan untuk menganalisa cluster dengan bentuk apapun pada suatu algoritma
clustering.
4.
Kemampuan
untuk dapat menangani noise
Data tidak selalu dalam keadaan baik. Ada kalanya terdapat data
yang rusak, tidak dimengerti atau hilang. Karena system inilah, suatu
algortima clustering dituntut untuk mampu menangani data yang rusak.
5.
Sensitifitas
terhadap perubahan input
Perubahan atau penambahan data pada input dapat menyebabkan terjadi
perubahan pada cluster yang telah ada bahkan bisa menyebabkan perubahan yang mencolok
apabila menggunakan algoritma clustering yang memiliki tingkat sensitifitas rendah.
6.
Mampu
melakukan clustering untuk data dimensi
tinggi
Suatu kelompok data dapat berisi banyak dimensi ataupun atribut.
Untuk itu diperlukan algoritma clustering yang mampu menangani data dengan dimensi yang jumlahnya tidak
sedikit.
7.
Interpresasi
dan kegunaan
Hasil dari clustering harus dapat diinterpretasikan dan berguna.
Metode Clustering :
Metode clustering secara umum dapat dibagi menjadi dua
yaitu hierarchical
clusteringdan partitional clustering(Tan,
2011). Sebagai tambahan, terdapat pula metode Density-Based dan Grid–Based yang
juga sering diterapkan dalam implementasi clustering. Berikut penjelasannya:
1.
Hierarchical clustering
Pada hierarchical clusteringdata
dikelompokkan melalui suatu bagan yang berupa hirarki, dimana terdapat
penggabungan dua grup yang terdekat disetiap iterasinya ataupun pembagian dari
seluruh set data kedalam cluster.
Langkah
melakukan Hierarchical
clustering:
1.
Identifikasi item dengan jarak terdekat
2.
Gabungkan item itu kedalam satu cluster
3.
Hitung
jarak antar cluster
4.
Ulangi
dari awal sampai semua terhubung
Contoh
metode hierarchy clustering: Single Linkage, Complete Linkage, Average Linkage, Average Group Linkage.
2.
Partitional Clustering
Partitional clusteringyaitu
data dikelompokkan ke dalam sejumlah cluster tanpa
adanya struktur hirarki antara satu dengan yang lainnya. Pada metode partitional clusteringsetiap cluster memiliki
titik pusat cluster (centroid)
dan secara umum metode ini memiliki fungsi tujuan yaitu meminimumkan jarak (dissimilarity) dari
seluruh data ke pusat cluster masing-masing.
Contoh metode partitional clustering: K-Means, Fuzzy K-means dan Mixture Modelling.
Metode K-Means Clustering
Metode K-means merupakan metode clustering yang paling sederhana dan umum. Hal ini dikarenakan K-means
mempunyai kemampuan mengelompokkan data dalam jumlah yang cukup besar dengan
waktu komputasi yang cepat dan efisien. K-Means merupakan salah satu algoritma klastering dengan metode
partisi (partitioning method) yang berbasis titik pusat (centroid) selain
algoritma k-Medoids yang berbasis obyek. Algoritma ini pertama kali diusulkan
oleh MacQueen (1967) dan dikembangkan oleh Hartigan dan Wong tahun
1975 dengan tujuan untuk dapat membagi M data point dalam N dimensi kedalam
sejumlah k cluster dimana proses klastering dilakukan dengan meminimalkan jarak
sum squares antara
data dengan masing masing pusat cluster (centroid-based). Algoritma k-Means dalam penerapannya memerlukan tiga parameter yang seluruhnya
ditentukan pengguna yaitu jumlah cluster k, inisialisasi klaster, dan jarak system, Biasanya, k-Means dijalankan secara independen dengan inisialisasi yang
berbeda menghasilkan cluster akhir yang berbeda karena algoritma ini secara prinsip hanya
mengelompokan data menuju local minimal. Salah satu cara untuk mengatasi local
minima adalah dengan
mengimplementasikan algoritma k-Means, untuk K yang diberikan, dengan beberapa nilai initial
partisi yang berbeda dan selanjutnya dipilih partisi dengan kesalahan kuadrat
terkecil (Jain, 2009).
K-Means adalah teknik yang cukup sederhana
dan cepat dalam proses clustering obyek (clustering). Algoritma K-mean mendefinisikan centroid atau pusat cluster dari cluster menjadi
rata-rata point dari cluster tersebut.Dalam
penerapan algoritma k-Means,
jika diberikan sekumpulan data X = {x1, x2, …,xn} dimana xi = (xi1, xi2, …, xin) adalah ystem dalam ruang real Rn, maka algoritma k-Means akan menyusun partisi X dalam sejumlah k cluster (a
priori). Setiap cluster memiliki
titik tengah (centroid) yang
merupakan nilai rata rata (mean) dari
data-data dalam cluster tersebut.
Tahapan awal, algoritma k-Means adalah memilih secara acak k buah obyek sebagai centroid dalam
data. Kemudian, jarak antara obyek dan centroid dihitung menggunakan Euclidian distance.
Algoritma k-Means
secara iterative meningkatkan
variasi nilai dalam dalam tiap tiap cluster dimana
obyek selanjutnya ditempatkan dalam kelompok yang terdekat, dihitung dari titik
tengah klaster. Titik tengah baru ditentukan bila semua data telah ditempatkan
dalam cluster terdekat.
Proses penentuan titik tengah dan penempatan data dalam cluster diulangi
sampai nilai titik tengah dari semua cluster yang
terbentuk tidak berubah lagi (Han dkk, 2012).
K-Means Clustering adalah
suatu metode penganalisaan data atau metode Data Mining yang melakukan proses
pemodelan tanpa supervisi (unsupervised) dan merupakan salah satu metode yang
melakukan pengelompokan data dengan sistem partisi.
Terdapat dua jenis data clustering yang sering dipergunakan dalam proses pengelompokan data yaitu Hierarchical dan Non-Hierarchical, dan K-Means merupakan salah satu metode data clustering non-hierarchical atau Partitional Clustering.
Metode K-Means Clustering berusaha mengelompokkan data yang ada ke dalam beberapa kelompok, dimana data dalam satu kelompok mempunyai karakteristik yang sama satu sama lainnya dan mempunyai karakteristik yang berbeda dengan data yang ada di dalam kelompok yang lain.
Dengan kata lain, metode K-Means Clustering bertujuan untuk meminimalisasikan objective function yang diset dalam proses clustering dengan cara meminimalkan variasi antar data yang ada di dalam suatu cluster dan memaksimalkan variasi dengan data yang ada di cluster lainnya.
Data
clustering menggunakan metode K-Means Clustering ini
secara umum dilakukan dengan algoritma dasar sebagai berikut:
1.
Tentukan
jumlah cluster
2.
Alokasikan
data ke dalam cluster secara random
3.
Hitung
centroid/rata-rata dari data yang ada di masing-masing cluster
4.
Alokasikan
masing-masing data ke centroid/rata-rata terdekat
5. Kembali ke Step 3, apabila masih ada data yang berpindah cluster atau apabila perubahan nilai centroid, ada yang di atas nilai threshold yang ditentukan atau apabila perubahan nilai pada objective function yang digunakan di atas nilai threshold yang ditentukan
1. Distance Space atau
Perhitungan Jarak Antara Data dan Centroid pada K-Means Clustering
Beberapa distance space dapat diimplementasikan untuk menghitung jarak (distance) antara data dan centroid termasuk di antaranya Manhattan/City Block Distance, Euclidean Distance dan Minkowski Distance. Tetapi secara umum distance space yang sering digunakan adalah Manhattan dan Euclidean. Euclidean sering digunakan karena penghitungan jarak dalam distance space ini merupakan jarak terpendek yang bisa didapatkan antara dua titik yang diperhitungkan, sedangkan Manhattan sering digunakan karena kemampuannya dalam mendeteksi keadaan khusus seperti keberadaaan outliers dengan lebih baik.
2. Beberapa Permasalahan
yang Terkait Dengan K-Means Clustering
Beberapa permasalahan yang sering muncul pada
saat menggunakan metode K-Means untuk melakukan pengelompokan data adalah:
1.
Ditemukannya
beberapa model clustering yang berbeda
2.
Pemilihan
jumlah cluster yang paling tepat
3.
Kegagalan
untuk converge
4.
Outliers
5.
Bentuk
cluster
6.
Overlapping
Keenam permasalahan ini adalah beberapa hal yang perlu diperhatikan pada saat menggunakan K-Means dalam mengelompokkan data.
Permasalahan 1 umumnya disebabkan oleh perbedaan proses inisialisasi anggota masing-masing cluster. Proses initialisasi yang sering digunakan adalah proses inisialisasi secara random. Dalam suatu studi perbandingan, proses inisialisasi secara random mempunyai kecenderungan untuk memberikan hasil yang lebih baik dan independent, walaupun dari segi kecepatan untuk convergen lebih lambat.
Permasalahan 2 merupakan
masalah laten dalam metode K-Means. Beberapa pendekatan telah digunakan dalam
menentukan jumlah cluster yang paling tepat untuk suatu dataset yang dianalisa
termasuk di antaranya Partition Entropy (PE) dan GAP Statistics.
Permasalahan 3, kegagalan untuk converge, secara teori memungkinkan untuk terjadi dalam metode Hard K-Means maupun Fuzzy K-Means. Kemungkinan ini akan semakin besar terjadi untuk metode Hard K-Means, karena setiap data di dalam dataset dialokasikan secara tegas (hard) untuk menjadi bagian dari suatu cluster tertentu. Perpindahan suatu data ke suatu cluster tertentu dapat mengubah karakteristik model clustering yang dapat menyebabkan data yang telah dipindahkan tersebut lebih sesuai untuk berada di cluster semula sebelum data tersebut dipindahkan. Demikian juga dengan keadaan sebaliknya. Kejadian seperti ini tentu akan mengakibatkan pemodelan tidak akan berhenti dan kegagalan untuk converge akan terjadi. Untuk Fuzzy K-Means, walaupun ada, kemungkinan permasalahan ini untuk terjadi sangatlah kecil, karena setiap data diperlengkapi dengan membership function (Fuzzy K-Means) untuk menjadi anggota cluster yang ditemukan.
Permasalahan 4, merupakan permasalahan umum yang terjadi hampir di setiap metode yang melakukan pemodelan terhadap data. Khusus untuk metode K-Means hal ini memang menjadi permasalahan yang cukup menentukan. Beberapa hal yang perlu diperhatikan dalam melakukan pendeteksian outliers dalam proses pengelompokan data termasuk bagaimana menentukan apakah suatu data item merupakan outliers dari suatu cluster tertentu dan apakah data dalam jumlah kecil yang membentuk suatu cluster tersendiri dapat dianggap sebagai outliers. Proses ini memerlukan suatu pendekatan khusus yang berbeda dengan proses pendeteksian outliers di dalam suatu dataset yang hanya terdiri dari satu populasi yang homogen.
Permasalahan 5 menyangkut bentuk cluster yang ditemukan. Tidak seperti metode data clustering lainnya, K-Means umumnya tidak mengindahkan bentuk dari masing-masing cluster yang mendasari model yang terbentuk, walaupun secara natural masing-masing cluster umumnya berbentuk bundar. Untuk dataset yang diperkirakan mempunyai bentuk yang tidak biasa, beberapa pendekatan perlu untuk diterapkan.
Permasalahan 6, masalah overlapping sebagai permasalahan terakhir sering sekali diabaikan karena umumnya masalah ini sulit terdeteksi. Hal ini terjadi untuk metode Hard K-Means dan Fuzzy K-Means, karena secara teori, metode ini tidak diperlengkapi feature untuk mendeteksi apakah di dalam suatu cluster ada cluster lain yang kemungkinan tersembunyi.
3. Hard K-Means dan Fuzzy
K-Means
Secara mendasar, ada dua cara pengalokasian
data kembali ke dalam masing-masing cluster pada saat proses iterasi
clustering. Kedua cara tersebut adalah pengalokasian dengan cara tegas (hard),
dimana data item secara tegas dinyatakan sebagai anggota cluster yang satu dan
tidak menjadi anggota cluster lainnya, dan dengan cara fuzzy, dimana
masing-masing data item diberikan nilai kemungkinan untuk bisa bergabung ke
setiap cluster yang ada. Kedua cara pengalokasian tersebut diakomodasikan pada
dua metode Hard K-Means dan Fuzzy K-Means.
Perbedaan di antara kedua metode ini terletak pada asumsi yang dipakai sebagai dasar pengalokasian.
a. Hard K-Means
Pengalokasian kembali data ke dalam masing-masing cluster dalam metode Hard K-Means didasarkan pada perbandingan jarak antara data dengan centroid setiap cluster yang ada. Data dialokasikan ulang secara tegas ke cluster yang mempunyai centroid terdekat dengan data tersebut. Pengalokasian ini dapat dirumuskan sebagai berikut:
dimana:
aik :
Keanggotaan data ke-k ke cluster ke-i
vi :
Nilai centroid cluster ke-i
b. Fuzzy K-Means
Metode Fuzzy K-Means (atau lebih sering disebut sebagai Fuzzy C-Means) mengalokasikan kembali data ke dalam masing-masing cluster dengan memanfaatkan teori Fuzzy. Teori ini mengeneralisasikan metode pengalokasian yang bersifat tegas (hard) seperti yang digunakan pada metode Hard K-Means. Dalam metode Fuzzy K-Means dipergunakan variabel membership function, uik, yang merujuk pada seberapa besar kemungkinan suatu data bisa menjadi anggota ke dalam suatu cluster.
Pada Fuzzy K-Means yang diusulkan oleh Bezdek, diperkenalkan juga suatu variabel myang merupakan weighting exponent dari membership function. Variabel ini dapat mengubah besaran pengaruh dari membership function, uik, dalam proses clustering menggunakan metode Fuzzy K-Means. Nilai m mempunyai wilayah nilai m>1.
Sampai sekarang ini tidak ada ketentuan yang jelas berapa besar nilai m yang optimal dalam melakukan proses optimasi suatu permasalahan clustering. Nilai myang umumnya digunakan adalah 2.
Membership function untuk suatu data ke suatu cluster tertentu dihitung menggunakan rumus sebagai berikut:
dimana:
uik :
Membership function data ke-k ke cluster ke-i
vi :
Nilai centroid cluster ke-i
m :
Weighting Exponent
Membership function, uik, mempunyai wilayah nilai 0 ≤ uik ≤ 1. Data
item yang mempunyai tingkat kemungkinan yang lebih tinggi ke suatu kelompok
akan mempunyai nilai membership function ke kelompok tersebut yang mendekati
angka 1 dan ke kelompok yang lain mendekati angka 0.
Untuk menghitung centroid cluster ke-i, vi, digunakan rumus sebagai berikut:
dimana:
N :
Jumlah data
m :
Weighting exponent
uik :
Membership function data ke-k ke cluster ke-i
4. Objective Function
Objective Function adalah pernyataan kuantitatif dari kasus optimasi, sebagai contoh: memaksimumkan benefit, dengan menentukan biaya operasi minimum. Objective Function yang digunakan untuk metode Hard K-Means, adalah sebagai berikut:
dimana:
N :
Jumlah data
c :
Jumlah cluster
aik :
Keanggotaan data ke-k ke cluster ke-i
vi :
Nilai centroid cluster ke-i
Nilai aik mempunyai nilai 0 atau 1. Apabila suatu
data merupakan anggota suatu kelompok maka nilai aik=1 dan sebaliknya.
Untuk metode Fuzzy K-Means, Objective Function yang digunakan adalah sebagai berikut:
dimana:
N :
Jumlah data
c :
Jumlah cluster
m :
Weighting exponent
uik :
Membership function data ke-k ke cluster ke-i
vi :
Nilai centroid cluster ke-i
Di sini uik bisa mengambil nilai mulai dari 0 sampai 1.
5. Semi-Supervised Classification
K-Means merupakan metode data clustering yang digolongkan sebagai metode pengklasifikasian yang bersifat unsupervised (tanpa arahan). Pengkategorian metode-metode pengklasifikasian data antara supervised dan unsupervised classification didasarkan pada adanya dataset yang data itemnya sudah sejak awal mempunyai label kelas atau tidak. Untuk data yang sudah mempunyai label kelas, metode pengklasifikasian yang digunakan merupakan metode supervised classification dan untuk data yang belum mempunyai label kelas, metode pengklasifikasian yang digunakan adalah metode unsupervised classification.
Selain masalah optimasi pengelompokan data ke masing-masing cluster, data clustering juga diasosiasikan dengan permasalahan penentuan jumlah cluster yang paling tepat untuk data yang dianalisa. Untuk kedua jenis K-Means, baik Hard K-Means dan Fuzzy K-Means, yang, penentuan jumlah cluster untuk dataset yang dianalisa umumnya dilakukan secara supervised atau ditentukan dari awal oleh pengguna, walaupun dalam penerapannya ada beberapa metode yang sering dipasangkan dengan metode K-Means.
Karena secara teori metode penentuan jumlah cluster ini tidak sama dengan metode pengelompokan yang dilakukan oleh K-Means, kevalidan jumlah cluster yang dihasilkan umumnya masih dipertanyakan. Melihat keadaan dimana pengguna umumnya sering menentukan jumlah cluster sendiri secara terpisah, baik itu dengan menggunakan metode tertentu atau berdasarkan pengalaman, di sini, kedua metode K-Means ini dapat disebut sebagai metode semi-supervised classification, karena metode ini mengalokasikan data items ke masing-masing cluster secara unsupervised dan menentukan jumlah cluster yang paling sesuai dengan data yang dianalisa secara supervised.
6. Karakteristik K-Means
1.
K-Means
sangat cepat dalam proses clustering
2.
K-Means
sangat sensitif pada pembangkitan centroid awal secara random
3.
Memungkinkan
suatu cluster tidak mempunyai anggota
4. Hasil
clustering dengan K-Means bersifat tidak unik (selalu berubah-ubah) – terkadang
baik, terkadang jelek
5. K-means sangat sulit untuk mencapai global optimum
Memperhatikan input dalam algoritma K-Means, dapat dikatakan bahwa algoritma ini hanya mengolah data kuantitatif atau numerik. Sebuah basis data tidak mungkin hanya berisi satu macam tipe data saja, akan tetapi beragam tipe. Sebuah basis data dapat berisi data-data dengan tipe sebagai berikut: binary, nominal, ordinal, interval dan ratio. Berbagai macam atribut dalam basis data yang berbeda tipe disebut sebagai data multivariate. Tipe data seperti nominal dan ordinal harus diolah terlebih dahulu menjadi data numerik (bisa dilakukan dengan cara diskritisasi), sehingga dapat diberlakukan algoritma K-Means dalam pembentukan clusternya.
Contoh Kasus Perhitungan
K-Means Clustering
Ditentukan banyaknya cluster yang dibentuk dua (k=2). Banyaknya cluster harus lebih kecil dari pada banyaknya data (k<n).
Inisialisasi centroid dataset pada tabel dataset diatas adalah C1 = {1 , 1} dan C2 = {2 , 1}. Inisialiasasi centroid dapat ditentukan secara manual ataupun random.
Untuk pengulangan berikutnya (pengulangan ke-1 sampai selesai), centroid baru dihitung dengan menghitung nilai rata-rata data pada setiap cluster. Jika centroid baru berbeda dengan centroid sebelumnya, maka proses dilanjutkan ke langkah berikutnya. Namun jika centroid yang baru dihitung sama dengan centroid sebelumnya, maka proses clustering selesai.
Rumus yang digunaka untuk menghitung distance space atau jarak data dengan centroid menggunakan Euclidiean Distance.
Pengulangan ke-1
Jarak data dengan Centroid C1 adalah:
Jarak data dengan Centroid C2 adalah:
Untuk seterusnya, hitung jarak pada setiap baris data, dan hasilnya seperti pada tabel dibawah.
Kelompokan data sesuai dengan cluster-nya, yaitu data yang memiliki jarak terpendek. Contoh; karena d(x1,c1) < d(x1,c2) maka x1 masuk ke dalam cluster 1. Pada tabel diatas, data n=1 masuk ke dalam cluster 1 karena dc1 < dc2, sedangkan n=2,3,4 masuk ke dalam cluster 2 karena dc2 < dc1.
Setelah mendapatkan label cluster untuk masing-masing data n=1,2,3,4 maka dicari nilai rata-ratanya dengan menjumlahkan seluruh anggota masing-masing cluster dan dibagi jumlah anggotanya.
Pengulangan ke-2
Pengulangan ke-3
Karena centroid tidak mengalami perubahan (sama
dengan centroid sebelumnya) maka proses clustering selesai.
DAFTAR PUSTAKA
https://yudiagusta.wordpress.com/clustering/
https://informatikalogi.com/algoritma-k-means-clustering/
https://socs.binus.ac.id/2017/03/09/clustering/
Komentar
Posting Komentar